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PROBLEM OF OPTIMAL CONTROL OF EPIDEMIC
IN VIEW OF LATENT PERIOD

N.I. OVSYANNIKOVA!
Moscow State Technical University of Civil Aviation, Moscow, Russia

The problem of optimal control of epidemic through vaccination and isolation, taking into account latent period is
considered. The target function is minimized — functionality summarizing costs on epidemic prevention and treatment and
also considering expenses on infected people left at the end of control T who may be a new source of epidemic. On the left
endpoint of the integration segment initial data is given — quantity of infected and confirmed people at the moment t, the
right endpoint is free. The dynamic constraints are written by way of a system of simple differential equations describing the
speed of changes of number of subjected to infection and number of already infected. Besides the inhomogeneous communi-
ty is considered, consisting of four age groups (babies, preschool children, school children and adults). The speed of vaccina-
tion (number of vaccinated per a time unit) and isolation speed are used as the control functions. There are some restrictions
on control above and below. The latent period is described by the constant h and is part of the equation describing the con-
tamination speed of people as a retarding in argument t, i.e. a person being in a latent period infects others not being aware of
his disease. For problem solving Pontryagin maximum principle is used where it can be seen that the control is piecewise
constant. The result of numerical implementation of discrete problem of optimal control is given. The conclusions are made
that the latent period significantly influence the incidence rate and as consequence the costs on epidemic suppression. The
programme based on the programming language Delphi gives an opportunity to estimate the scale of epidemic at different
initial data and restrictions on control as well as to find an optimal control minimizing costs on epimedic suppression.

Key words: optimal control of epidemic, latent period, vaccination and isolation, minimization of epidemic elimi-
nation costs.

INTRODUCTION

Problems of optimal control of systems with delayed argument have extensive applications in
engineering, economics, medicine, automatic control theory, theory of self-oscillatory systems and
other sciences [1, p.78]. The development of approximate and numerical methods for solving such
problems is a pressing issue. In this paper, taking into account latent period, we consider the problem
of optimal control of the epidemic, which is described by a system of ordinary differential equations
with delayed argument. The author constructed a model of the epidemic with a constant delay on the
basis of Cermak-McKendrick model, formulated necessary conditions for optimality of the Pontryagin
maximum principle, developed a numerical method for solving the problem for an inhomogeneous
community, consisting of four groups, and carried out an analysis of the impact of the delay on opti-
mal control.

RESEARCH METHODS AND METHODOLOGY
Let us consider the problem of optimal control of epidemic through vaccination and isolation in

an inhomogeneous community, consisting of n age groups, taking into account the latent period h. The
dynamics of the epidemic is described by the following system of differential equations with delay:

X0 ==X OB,y (0 %0 -V, O+ A, i—1n, te[oT],
(1)
yi(t):Xi(t_h)Zﬂijyj(t_h)_ﬂiyi(t)_ﬁi)/i(t)_7iyi(t)_ui(t)l i=Ln, tel[0T],

with the initial conditions on the interval of delay T, :
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where x, (t) — number of people exposed to infection in the i-group at time t (i =1, n), y, (t) — number of
people infected in the i-group, X;(t) — rate of change in the number of people exposed to infection in the

i-group at time t, Y, (t) — rate of change of the number of infected people in the i-group, X; (t)>_B;Y; (t) —
j=1

rate of infection of healthy people out of the i-group from the infected people of the j-group at time t, given
the fact that the infection could occur from an infected person from any of the j-group (j =1, n), 7., (t) -
number of patients in the i-group, regained their health without the action of external agents: quarantine, vac-
cination and so forth (" — average time of natural recovery for the given infectious disease), By —growth

coefficient, characterizing the frequency of meetings of healthy people out of the i-group with infected people
out of the j-group and the probability of infection at the meeting, 4, — natural mortality coefficient of people

in the i-group, z, — mortality coefficient from the given infection in the i-group, A, — average birth rate in
the i-th group, h — constant quantity, characterizing the latent time of the disease. Let us denote v, (t) — popu-
lation vaccination rate among those who are exposed to infection in i-group at time t, u, (t) — isolation rate of
the infected in i-group at time t. Restrictions on the control functions are set in the following form:

<v. <M., i=

=
>
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(4)
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0<u;, <N,
where M;, N, — maximum rates of vaccination and isolation (are limited by technical and material
possibilities) in the i-group.

Functional:

30) = [ 304y, @+ D, (0460, )k + 3By, (T) - inf )

0 i=1l

characterizes the aim of control, which is to minimize the cost of infection elimination, where A — the
average cost per patient for the society per unit of time (known quantity, for Russia it is about $ 50
[4, p. 7]), D, — the cost of vaccination per person in the i-group, C, — the cost of isolation per person
in the i-group. The latter summand refers to the cost of residual patients, which may cause secondary
infection, so their cost B, (i =1;n) should be large (as a penalty for undertreated patients). Unfortu-
nately, in the latter summand we can not take into account the ones who are in incubation period, as
they have not moved in the patients’ group yet.

If we take A, the average cost of a patient for the society per a unit of time, equal to one stand-
ard monetary unit, then (5) can be rewritten as following:

Ton n
J(UV) = [ D2y (0) +dyv, (©) +¢,u, (©)dt + Dby, (T) — inf (6)
0 i=1 i=1
where d;, — relative cost of vaccination per person in the i-group, ¢, — relative cost of

isolation of the patient in the i-group, b,

— relative cost of one undertreated patient
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in i-group at time T (and b > 1, since each undertreated patient can infect more people
in the future).
Necessary conditions of optimality: let’s construct Pontryagin’s function:

H(x,Y,9,z,v,U,p,q) —ﬁoz (t) +d.v, (t) +c,u, (1)) +Z( X; (1) Zﬂ”y — X (1) + A, =V, () +

Zq (0)(@: (1) Zﬂu § O =Y ©) = Y (O = 73y (O = (1),

where g, (t) =x (t—h), z®)=y,(t-h), i=%
Switching functions:

o (1) =-4,d; —pi (1), () =-4A,C —q;(t), i =1n.

On the basis of the theorem about the necessary conditions of optimality in systems with after
effects, formulated and proved in [2], [3], [6], we can write the necessary conditions of optimality for
the previously constructed model.

If permissible process W = (X, y,V,u) for each t €[0;T] is optimal in the problem (1)—(4), (6),
then there exist not all at a time equal to zero number 4, and vector functions p,(t), g;(t) such that
the optimal control is determined by the following conditions:

v, =0, if (-4,d;,—p;()) <0, i=1n
V,=M,, if (~%d,—p®)>0 i=Ln (7)
0<V, <M, if (=4,d,-p,()=0, i=Ln
Vi =0, if (=A4d; —p,(t) <0, i=Ln
V,=M,, if (~4d;—p®)>0, i=Ln ®)
0<V, <M, if (=4,d,—p,()=0, i=1Ln
and conjugate functions satisfy the system of differential equations (here and below A, =1):
OH| oJH 3 :
po=—| —| =R QA Ha)| Fa A =
| axlt 8g| t+h | Jz—;‘ ' | t Ié : Jt+h
=p O A Y; O +m) 40+ izt +h), i=1n
8H|_1 cH s : 3 )
=771 :1+(Zﬂilxi P +0, (1 + 44 + 7)) _Zﬂilgi Qi|t+h =
aylt oz, t+h i=1 ¢ 0=l
:1+Z pi(t)ﬁilxi(t)_zqi(t+h)ﬂilxi (t)+q| (t)(M + 4 +7|)’ i=l,_
i=1 i=1
pi(M)=0; q;(T)=-b; p;(t)=0, g;(t)=0, t>T. (10)

(10) — transversality conditions at the right end of integration.
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Numerical realization of the task: We divide the interval of integration [O; T] into g equal subintervals
by the points 0=t, <t, <...<t, =T so that the length of each subinterval is At=t;, —t;, i=0,9-1.
Let’s divide delay interval [-h; O] with a step At rounding the obtained result to an integer m > 0.

Integral I(v,u) may be found by a numerical method of rectangles, the error is estimated by the
formula:

|R|£r[r£>]<|f'(x)

|(b—a)2
2n '

where f(x) — integrand, [a; b] — the integration interval, n is the number of elementary partition seg-
ments of [a; b] [9, p. 99], and differential equations — by the Euler method, the error is estimated by the
formula |y, — y(x,)| < C,h (" —1), where |y, —y(x;)| — deviation of the approximate solution
from the exact one, Ci, C> — positive constants determined by the right side of the equation
y'= f(X,y) and its derivatives in the neighborhood of the point (x;,y;), h = const — step of the nu-
merical method, from h — 0 should be uniform aspiration [8 , p. 37].

Then the problem (1)—(5) is approximated by the following discrete problem of optimal control
with accuracy O(At) :

n gl . . n
L(v,u) =D > (Y] +d,V; +c,uj)At+ > b,y — inf (11)
j=1i=0 =

X=X = XGALY. B Y ALV + X —A), j=Ln, i=00-1
k=1

o Ta o _ (12)
Yit =Y XA By " = AWy + )Y U, j=Ln, 1=0,0-1,
k=1
X" =¢) ¥i'=¢) j=ln i=-m0 (13)
in the delay interval To
0<Vvi <A, 0<u{<B,, j=1n, i=0q-1 (14)
The Lagrangian function:
N i i $ P I B e i
L =4 Z (yj+djvj+cjuj)At+ijyﬁ1 +Zij Exi —Xj + XA, B Vi +
j=1i=0 j=1 j=1i=0 k=1 (15)

) . n g1l . ) . n . ) .
At(v'j + 44X —Aj))+ZZq'j+1(y'j+l—y'j — X "ALY. By +At(yj + 4 +yj)y'j +u'jj.
i k=1

j=1|=

We calculate the derivatives of the Lagrangian function, write down stationary conditions in the
problem (11)—(14):
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aL i i+ i+ : i i+ i+1+m : i
8_)(;: P; — P; L P; lAth:;ﬂjkyk +D; 1At/uj —(; ! At;ﬂjkYk =0

al— C i+ i i i+ C i+1+m i i+ ~
$=At+Atz Pk lﬂijk +0; — 0 l—AtZQk ' BgXc +Atq; 1(7/,' +u;+ ;) =0
i k=1 k=1

J

or
P = Pyt = PALY By Y - Py ALy + ALY By, j=1n, i=0q-1
k=1 k=1
: ) (16)
CI} = q;ﬂ — At — Atz pll<+113kj X|I< + AtZQL+l+mﬂkj XII< _Atq;ﬂ(}/j TH T '&J’ )’ J =Ln,i=0, q-1
k=1 k=1
oL oL i i
] ale J 8y(13| J ] J

Partial derivatives of the Lagrangian function with respect to the control variable are the
following:

i oL i+1 i oL i+1
CDI-:—.: ﬂod-"'pl- At,l//-:—.: %C--Fq- At

17 5y ( i P ) j oul ( T4 ) (18)
n

—_—

i=0,g-1

j=11 1

To build the solution to the discrete problem of optimal control (11)—(18) we use the gradient
projection method [10].

RESULTS OF THE RESEARCH

To carry out the experiment on a real model there were used statistical data on influenza epi-
demic in the city of Arkhangelsk. The data were provided by the Territorial Administration of the epi-
demiological surveillance in the city of Arkhangelsk over the past twenty years. On the basis of these
data there were allocated four age groups:

I group — children from 0 to 2 years old,

I1 group — children from 3 to 6 years old,

I11 group — children from 7 to 14 years old,

IV group — people over 15 years old.

Mortality coefficients (independent of the flu) for each group, calculated in accordance with

statistical data for Arkhangelsk: 4 =0.008, u, =0.001, x; =0.001, x, =0.028. z; =0 (] =14) -

take death coefficients, where death occurred because of the flu, zero, as there were no registered
deaths caused by the flu over the past twenty years in Arkhangelsk. Take one week per a unit of time.

The average birth rate in the 1st group is 35 people a week, in the rest groups A ;=0 (] = 2:4). v~
natural recovery coefficient, it can be taken equal to one, as y; ! _ the average time of natural recovery

coefficient, as for flu can be taken equal to one week. The coefficients g, are found by solving the
inverse problem:
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Pra=422:107; B, = B, = fiy = 4,22-10°°;
Bor =650-107°; 3, = B3 = fB,, ~ 6,50-10°°;
Pas = 2,41-10°%; Par = Py = Pay © 2,41-10°°;
P =307-107°; B, = B, = f,; ~3,07-107;

The latent period of the flu disease is from 1 to 10 days (usually 3-5 days) [4, p. 2]. Let us con-
sider the time period of 10 weeks (T = 10). The relative vaccination cost is d = 0,01 in all the groups.
The relative isolation cost is ¢ = 3 in all the groups. The calculations were made in Delphi. In case
when b1 = b2 = bz = bs = 0 the solution of the problem is shown on the following graphs (the epidemic
dynamics and optimal control for the first, second and third groups are similar, therefore the graphics
are shown only for the third and fourth groups).
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Fig. 1. Dynamics of the infected ys (a), isolation control usz (b), vaccination control vs (c) depending on h
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Fig. 2. Dynamics of the infected ya (a), isolation control us (b), vaccination control v4 (c) depending on h

Analysis of the results shows that with the growth of h increases the number of infected people
Yi (j :1,_4) on the interval [O; T], decreases duration of vaccination control as well as duration of isola-
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tion control, although not all the patients are isolated and cured. With the growth of h increase the total
costs of infection elimination.

Now take bj # 0 (j = 1,2,3,4), i.e. introduce a fine for undertreated patients. Let bj = 5
(=1,23,4).
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Fig. 3. Dynamics of the infected ys(a) and y4 (b) under constant isolation control us = us = 100 (pers./week)
and dynamics of the infected y4 (c) under constant isolation control us = 500 (pers./week) depending on h

So now it is obvious that it is more profitable to heal the patients than to leave them undertreat-
ed, as they may cause secondary infection. Therefore, control should be of maximum rate and dura-
tion. Control in the first three groups is enough to eliminate the infection in the period under review
(fig. 3a), in the fourth group — not enough (fig. 3b). To eliminate the infection in the fourth group, you
have to either strengthen control or increase its duration. Increase in the isolation rate of patients up to
five times gives the desired result — an epidemic in the fourth group will be eliminated within the re-
quired time frame (fig. 3c).

DISCUSSION OF OBTAINED RESULTS AND CONCLUSION

We have considered the problem of optimal control of epidemic through vaccination
and isolation in an inhomogeneous community, consisting of four age groups, taking into account
latent period. The aim of the control is to minimize the costs to fight the epidemic at existing control
restrictions. The objective of numerical research is to reveal the impact of the latent period duration
on program control. To carry out numerical experiment on a real model there were used statistical
data on influenza epidemic in the city of Arkhangelsk. The obtained result shows that with the
growth of latent period increases the number of the infected in all the groups, decreases duration
of vaccination control as well as duration of isolation control, although not all the patients are
isolated and cured. When introducing a fine for undertreated patients, control maximizes with
respect to rate and duration, as it is more profitable to cure the patients rather than fight off the second-
ary infection.
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3AJIAYA OIITUMAJIBHOI'O YIIPABJIEHUS SIINJIEMUEN
C YYETOM JIATEHTHOT O IEPNOJIA

H.!. OBcsinankoBal

"Wockosckuii 20CY0apcmeeHHbIl MeXHUYeCKUll yHugepcumem paxcOancKkol asuayuu,
2. Mockea, Poccus

PaccmaTrpuBaeTcs 3agadya ONTUMAJIBHOTO YIPABJIEHUS 3MUAEMUEN MyTEM BaKUMHALMKU U U30JSIUUU C YUETOM Jia-
TEHTHOTO Teprona. MUHUMH3HpYETCs meneBas GyHKOUsA — (QYHKIIMOHAN, CYMMHPYIOIIUK 3aTpaThl Ha JCUeHHE U Mpodu-
JAKTHKY SMHUIECMHUH, & TAKXKE YYUTHIBAIONINA CTOMMOCTH WH(MHUIIMPOBAHHBIX JIFOJCH, OCTABIIMXCS HA MOMEHT OKOHYAHHS
ynpaBiieHust 7, KOTOpbIE€ MOTYT SIBUTbCSI HICTOUHUKOM HOBOH 3nujieMuu. Ha neBoM KOHLIE OTpe3Ka HHTEIPUPOBAHUS 33/1aHbI
HaYaIbHBIC YCIIOBHS — KOJHMYSCTBO MHPHUIIMPOBAHHBIX M ITOJABEPIKEHHBIX 3aPaXXCHHUIO B MOMEHT BpEMEHH 1, IpaBbIil KOHEI
— cBOOOIHBIN. J[MHAMITYECKUE OTpaHUYCHIS 3aIHCaHbl B BUJIE CHCTEMbI OOBIKHOBEHHBIX JH((epeHInaNbHBIX yPaBHCHUH,
ONMCHIBAIOIIUX CKOPOCTh U3MEHEHUsI YUCIIa NOJIBEP>KEHHBIX 3apakKeHUIO U YMCia yKe 3apaxeHHbIX. [Ipuuem paccmatpu-
BaeTCsl HEOJHOPOJHOE OOINECTBO, COCTOAIIEE M3 UETHIPEX BO3PACTHBIX TPyMI (MIIaJIEHIbI, JOUIKOJLHUKH, IIKOJIbHUKH,
B3pocibie). B kauecTBe ynpaBisirommx GyHKIUH B3STHl CKOPOCTh BaKIIWHAIMK (YUCIIO BaKITMHUPOBAHHBIX B €IUHUILY Bpe-
MEHH) U CKOPOCTh M30JISIIMH. VIMEIOTCSl OTpaHUYCHHS Ha YIIPAaBJIICHUE CBEPXY W CHH3Y. JIaTEHTHBIN MEepHOJT OMUCHIBACT CS
KOHCTaHTO#H h, 1 BXOAWT B ypaBHEHHE, ONMUCHIBAIOIIEE CKOPOCTh MHMUIIMPOBAHUS JIIOJIEH KaK 3ala3/(pIBaHKE B apryMeHTe t,
TO €CTh YEJIOBEK, HAXOIIMIACSA B JIATEHTHOM TIEPHOJIE, 3apakaeT OKPYKaloIUX, He 3Hasl, YTO OH yxe OosieH. [[ist pernre-
HUA 3a1a4yu 3anuchiBaeTcss [lpuHuun makcumyma [lOHTpsrMHA, OTKyAa BUIHO, YTO YIIPAaBJIEHUE SIBISIETCS KYCOYHO-
MOCTOSIHHBIM. B paboTe npuBOIUTCS pe3yibTaT YHCICHHOW peau3alud TUCKPETHOW 3a/1a4y ONTUMAIFHOTO YIPaBICHHUS,
CZIeTIaHbI BRIBOJIBI O TOM, YTO JIATCHTHBIH MEPHOJ CYIIECTBEHHO BIHUAECT HA POCT 3a00JICBAEMOCTH U, KaK CICICTBHE, PacXo-
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JIOB Ha TIOTalleHue dnuaeMun. [IporpamMma, HamucaHHas Ha s3bIKe IporpammupoBanust Delphi, maet Bo3moxHOCTH or1e-
HHUTh MacIITaObl SMHUJIEMHH NIPH Pa3IMYHBIX HayaJIbHBIX JAHHBIX U OIPaHUYEHHSX Ha YNpaBJCHHUE, a TaKKe HAHUTH ONTH-
MaJIbHOE yNIpaBJIeHUE, MUHUMHU3HPYIOIEEe pacXo bl Ha MOralleHNe dHIEMHH.

KiroueBble ¢JI0Ba: ONTHMAaIbHOE YyIipaBJICHUEC SHHZ[CMHeﬁ, JIATEHTHBIN Nepuoa, BaKIMHAIUA U U30JAL0UA, MUHU-
Mu3alud 3aTpaTt Ha MOTralieHue SITUACMUH.
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