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SYMMETRIES AND LAX INTEGRABILITY
OF THE GENERALIZED PROUDMAN-JOHNSON EQUATION
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We study local symmetries of the generalized Proudman-Johnson equation. Symmetries of a partial differential
equation may be used to find its invariant solutions. In particular, if ¢ is a characteristic of a symmetry for a PDE H = 0
then the g-invariant solution of the PDE is a solution to the compatible over-determined system H = 0, ¢ = 0. We show
that the Lie algebra of local symmetries for the generalized Proudman-Johnson equation is infinite-dimensional. Reductions
of equation with respect to the local symmetries provide ordinary differential equations that describe invariant solutions.
For a certain value of the parameter entering the equation we find some cases when the reduced ODE is integrable by quad-
ratures and thus allows one to construct exact solutions. Differential coverings (or Wahlquist-Estabrook prolongation struc-
tures, or zero-curvature representations, or integrable extensions, etc.) are of great importance in geometry of PDES. The
theory of coverings is a natural framework for dealing with inverse scattering constructions for soliton equations, Béacklund
transformations, recursion operators, nonlocal symmetries and nonlocal conservation laws, Darboux transformations, and
deformations of nonlinear PDES. In the last section we show that in the case of a certain value of the parameter entering the
equation it has a differential covering. This property is referred to as a Lax integrability.

Key words: generalized Proudman-Johnson equation, local symmetry of differential equation, invariant solution,
differential covering, Bécklund transformation.

INTRODUCTION

In this paper we consider the generalized Proudman-Johnson equation, [1, 2, 3, 4], in its poten-
tial form

Upy = Ullyy + A UE + £ Uyyy. (1)

Equation (1) with @« = —1 was derived from the Navier-Stokes equations for incompressible
viscous fluid by assuming a special similarity form on the velocity field; see [1] and the references
therein. When & = 0, equation (1) gets the form of the generalized Hunter—Saxton equation

Upy = Ulyy + A UZ, 2)

Thus equation (1) may be considered as a dispersive deformation of (2). In [5] it was shown
that equation (2) is linearizable and integrable by quadratures, see also [6]. In the present paper we
consider case € # 0. In this case after the scaling u — cu, t = £71 t equation (1) acquires the form

Upy = Ullyy + AU + Uypy- ©))

We show that the Lie algebra of local symmetries for equation (3) is infinite-dimensional. Re-
ductions of equation (3) with respect to the local symmetries provide ordinary differential equations
that describe invariant solutions of (3). For « = 1 we find some cases when the reduced ODE is inte-
grable by quadratures and thus allows one to construct exact solutions of (3).

Finally, we show that in the case of a = 2 equation (3) has a differential covering, [7, 8, 9].

This property is referred to as a Lax integrability. The Lax integrability of (2) in the case of a = %was

established in [10], see also [11].
We follow definitions and notation of [7, 8, 9].
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1. LOCAL SYMMETRIES
Local symmetries of equation (3) are solutions ¢ = @(t, x, u, u;, u,) to its linearization
DDy (¢) = uDF(9) + Urx @ + 2 @ uy Dy () + DZ9p),
where D, and D, are restictions of the total derivatives D, = d/9; + Y, Uj41,j0/0u;jand D, = 9/0, +
X U;j+1 0/0u;; on (3). Here and below we denote u; ; = u it ) Kok 0

XX T gtigat
itimes jtimes

The direct computations give the following result.
THEOREM 1. The local symmetry algebra of equation is infinite-dimensional. In the case of a #
1 it is generated by the vector fields with characteristics

A =Au, + A", Yy =u, Y, =2tu; + xu, +u,

where A = A(t) and B = B(t) below are arbitrary functions of ¢, and primes denote derivatives of
functions of one argument w.r.t. their arguments. The structure of a Lie algebra is given by the relations

{0(A),9(B)} =0, {tho, p(A)} = —=p(A"), {1, 9(A)} = —p(A =2t A"), {0, Y1} = =2,
In the case of @ = 1 the symmetry algebra is extended by the vector field with the characteristic
Y, =t?u; +txu, +tu+ x.

The additional relations of the extended Lie algebra read

Y2, 0(A)} = —p(t A—t* A"), (Yo, 2} = =1, (Y1, P2} = =21,
2. INVARIANT SOLUTIONS

Symmetries of a partial differential equation may be used to find its invariant solutions. In par-
ticular, if ¢ is a characteristic of a symmetry for a PDE H(t,x,u, us, Uy, ..., u;;) = 0, then the
@-invariant solution of the pPDE is a solution to the compatible over-determined system H = 0, ¢ = 0.

For equation (3) we consider 1, -invariant solutions. The condition ; = 2tu; +xu, +u =20
holds whenever

u=t""2w(z2), z=xt"1? 4)

where w is an arbitrary function of z.
Substituting for (4) into (3) yields the following ODE:

1
w'' + (W +3 z) w' +aWwHi+w =0. 5)

It is convenient to change the dependent variable in (5) via the transformation w(z) = r(z) —
% z, then we have
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a—2
r”’+rr”+a(r’)2+(a—1)r’—T= 0. (6)
We note that in the case of @ = 1 the order of this equation may be reduced by two. Indeed, in

this case equation (6) has the form
rz Zz rn
(T T @) =0

This equation may be integrated twice, then up to the change of the independent variable z —
Z + c it obtaines the form of Riccati’s equation

1 z2
=l m ™
T Zr +8+,8,

where B is an arbitrary constant. Then substituting for r(z) = 2 q'(2)/q(z) into (7) yields Weber’s
equation, [13, 14],

q" = % (z>+8p)q. (8)

The scaling z = v/2 s of the independent variable gives the normal form

d’v /1
— _—(Z g2 9
752 (4 s +,B) v )
of equation (8) with v(s) = q(z). It was proven in [15] that equation (9) is integrable by quadratures
whenever 8 = % + n with n € Z. Therefore for any g of this form we may integrate equation (7) and

then find function w(z) that defines the invariant solution (4) of equation (3) with @ = 1. For example,
in the cases n = 0 and n = 1 we have, respectively,

Zexp(—%zz)
w =

Pz 2)+C
and

4 (qb(% z)+C)

2((32)+C) +4 exp (— 5 27)

w =

where C is an arbitrary constant and
¢
D) = f exp (— 1) dr.

0

LAX INTEGRABILITY IN THE CASEOF a = 2
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Differential coverings (or Wahlquist-Estabrook prolongation structures, [16], or zero-curvature
representations, [17], or integrable extensions, [18], etc.) are of great importance in geometry of PDES.
The theory of coverings is a natural framework for dealing with inverse scattering constructions for
soliton equations, Bécklund transformations, recursion operators, nonlocal symmetries and nonlocal
conservation laws, Darboux transformations, and deformations of nonlinear PDEs, [7, 8, 9]. In this sec-
tion we show that in the case of a = 2 equation (3) admits a covering. We have the following result,
whose proof is a direct computation:

THEOREM 2. System

) 1
AQx = q +§”x*
, (10
qc = uq2+uxq+§(uxx+uux)

defines a differential covering for equation (3) with « = 2.

The structure algebra of this covering is generated by the vector fields 9, q d,, q* d,, and is
therefore isomorphic to the Lie algebra sI(2, R).

Excluding u from (10) yields equation

Qrx = Qrex + 2% —80° Qe + Qux 4 (G + 2° — ) (1)
In other words, system (10) defines a Backlund transformation between equations (3) and (11).
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CUMMETPUM N UHTET'PUPYEMOCTbD I10 JIAKCY
OBOBHIEHHOI'O YPABHEHUSA IPYIMAHA - JZKOHCOHA

0O.U. Mopo3os!
YKagpeopa npuxnaonoii mamemamuxu, Yuusepcumem Hayxu u Texnonoeuu, 2. Kpaxos, Ionvua

W3y4aroTcs IoKalbHbIE CUMMETPUE 0000mEHHOr0 ypaBHeHus [Ipyamana — Jlxxoncona. Cummerpun auddepen-
LIMaIbHOTO YPAaBHEHUS B YACTHBIX MPOM3BOAHBIX MOTYT MCIOJb30BaThCS AJISl HAXOXKICHUS €0 MHBAPUAHTHBIX PEIICHUU.
B yactHOCTH, €M (P ecTh Npou3BOAsAILas QyHKIMA CUMMETPUH JUls ypaBHeHus [/ = 0, TO (0 — MHBapMaHTHbIE PEILECHUS
CyTh peleHus nepeonpeneéutoi copmectHot cuctembl H =0, ¢ = 0. [lokaszaHo, uro anredpa JIu JTOKaTbHBIX CHMMET-
puit 0606meénHoro ypaBHeHus [Ipyamana-JIxoHcoHa siBnsieTcs: OeckoHeuHOH. HaiiieHbl HEKOTOpBIE CiTydau, KOrja peay-
[IUPOBAaHHOE MPHU MOMOIIM CUMMETPHI YpaBHEHHE CBOJUTCS K OOBIKHOBEHHBIM JHU(epeHITHaNbHBIM ypaBHEHUSIM, KOTO-
pBIe MHTETPUPYIOTCS B KBaJIpaTypax, YTO IO3BOJIIET IIOCTPOUTH COOTBETCTBYIOIINE TOYHBIC pemieHus. JnuddepeHnuans-
HBIE HAKPBITHS (MJIM CTPYKTYpHI TpomoibkeHuss Bonkeucra — McraOpyka, Wwin mpencTaBIeHUsI HYJIEBOH KPUBHU3HBI, HIIH
HHTETPUpPYEMbIC PACIIMPEHUS W TaK Jajee) BeChMa BaKHBI B TCOMETPUH YpPaBHEHUH B YACTHBHIX MPOU3BONHBIX. Teopus
I QepeHInaTbHBIX HAKPBITHH €CTh €CTECTBEHHBIN SI3BIK [T pabOTHI ¢ 0OpaTHOM 3a/1avuell TCOPHH PacCEUBAHUA B CIIydae
COJIMTOHHBIX ypaBHEHWH, MpeoOpa3zoBaHuii BakiryHIa, onepaTopoB peKypCHH, HEIOKAIBHBIX CHMMETPUN M HEIOKATbHBIX
3aKOHOB COXpaHEHus, mpeobdpazopanuii [JapOy u medopmarmii HEMUHEWHBIX ypaBHEHHWHA. B mocienHeM pasnene craThbu
MOKAa3aHO, YTO TMPU HEKOTOPBIX 3HAUEHUSX MapamMeTpa, BXonsAuero B ypaBHenue [Ipynmana — JI>koHCOHa, OHO 0oOnaaaer
JuddepeHIranbHBIM HAaKPhITHEM. DTO CBOMCTBO TAKXKE HA3BIBACTCS HHTETPHUPYEMOCTRIO 110 JIakcy.

KaioueBble ciioBa: 06001ménnoe ypasaenue [Ipyamana — JxoHcoHa, muddepeHiuanbHoe HaKphITHE, JTOKaTbHbIe
CUMMETpPHH, MHBapUAHTHbIEC PelIeHHs, peodpazoBaHue bakmyHa.
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